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Preface

This book entitled with “General Topology and Applications" is designed as a text book for two semesters
course usually called “Point Set Topology" or “Metric Topology". This text is designed for the first semester
course at the lower undergraduate level with the title ‘Introduction to General Topology’ covers chaps. 2 to
6 and the second semester course with the title ‘Advances in General Topology’ covering chaps. 7 to 11. It
is accessible to junior mathematics majors who have studied multivariable calculus.

Pre-Requisites

The essential prerequisites for reading this book are quite minimal: not much more than a stiff course
in analysis, advanced calculus and abstract algebra. We have included every topic that we think essential
for the training of topology, and to enhance the understanding of the subject we have also gone down a
number of bypaths. We have given complete definitions well explained by suitable examples, explanations,
and proofs throughout the text, so that the book should be usable for indivisible study as well as for a course
work.

General Topology is an important branch of mathematics having immense interest in its own right, and
it also serves to lay the foundations for future study in various branches of mathematics. It deals with points
and sets in topological spaces, and continuous functions between topological spaces. It also deals with basic
properties of topological spaces, such as compactness and connectedness, that depend only on the topology.
It is the purest form of topology and provides a basic language for the rest of mathematics, relying on the ba-
sic definitions of open sets and topological spaces. The important feature of general topology is that the very
wide use of its methods in many of the other branches of modern mathematics such as those dealing with
functional analysis, partial differential equations, classical mechanics, theoretical physics, general theory of
relativity, mathematical economics, biology, etc. Topology is, indeed, an abstract mathematical theory that
connects different branches, carries the potential of new development of mathematics. Nowadays topology
has become a powerful instrument of mathematical research, and its language acquired importance.

The contents of the book has been divided into thirteen chapters, is devoted to the subject commonly
called general topology or point set topology. Chapters 2-11 deal with the body of material that is included
in any introductory topology course worthy of the name. This may be considered the “irreducible core" of
the subject, treating as it does set theory, topological spaces, connectedness, compactness (through com-
pactness of finite products), and the countability and separation axioms. The remaining two chapters; that
is, chaps. 10 and 11 explore additional topics; they are essentially independent of one another, depending on
only the core material of Chapters 2-9. The instructor may take them up in any order he or she chooses.

Chapter 1 begins with an introduction to the basic concepts of topology, namely, set theory, logic, re-
lations, basic results of analysis, fields of reals, complex numbers and quaternion R,C and H and their
properties. Especially ‘cardinality of sets’, ‘continuum hypothesis’ and the ‘Schauder-Berstein theorem’ are
discussed in details. Indeed, the first chapter is strictly preparatory and may be assigned as a self-study.

Chapter 2 provides a motivation for topology through geometry by introducing the notions of topology
and its base and subbase. The key first step in the theory is to extend the concepts of open sets, closure,
interior and boundary of a set, subspace from metric space to topological space. An account of continuous
functions, the notions of product topology and quotient topology are also discussed.

Chapter 3 studies countability axioms and separability. Connectedness, components, local connected-
ness and path-connectedness are the main topics for our study and are discussed in great details.

Chapter 4 deals with compact spaces and the Tychonoff theorem. In this chapter, we focus our studies
on compactness, countable compactness, sequential compactness, local connectedness and limit point com-
pactness. An account of the Alexander subbase theorem is also given.

Chapter 5 deals with separation axioms. In fact, 7y, 71,12, T3, T; L T, and Tsare studies.

Chapter 6 deals with compactification, In this chapter we discuss Alexandroff’s one point compactifica-
tion and the Stone-Cech compactification theorem in great details.
Chapter 7 introduces the concepts of product topology, coproduct and Moore-Smith convergence. The
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object of the present chapter is to discuss in details the Tychonoff product topology, productive, countably
productive properties, introduces the concepts of nets and filters. As an application of filters, we have dis-
cussed that compactness is a productive property.

Chapter 8 introduces the notions of embedding, metrizability, local compactness and paracompact
spaces. Uryshon metrization theorem, Nagata-Smirnov metrization theorem and Smirnov metrization theo-
rem are discussed in great details.

Chapter 9 introduces the concepts of nets and filters.

Chapter 10 deals with uniform spaces. In this chapter we discuss uniform continuity, product uniformity,
metrization, uniformity via pseudo-metrices, uniform subspaces and proximity spaces. Completeness and
compactness in uniform spaces are also discussed.

Chapter 11 studies complete metric spaces, gauge spaces, space filling curves and function spaces. In
this chapter we define topologies and uniformities for the set of continuous functions and prove compact-
ness, completeness and continuity properties for the resulting spaces. Finally, Ascoli’s theorem is discussed.

Chapter 12 introduces the notions of manifold and its geometry. In particular, imbedding of manifolds
and some application to geometry of the universe is also discussed.

Chapter 13 introduces the notion of Baire space and Baire’s category theorem is discussed. In this chap-
ter we also introduce dimension theory.

This book evolved from classes taught by the author at Kalyan PG College, Bhilai and Pt. Ravishankar
Shukla University, Raipur, India. Furthermore, the book is self-contained and the presentation is detailed, to
avoid irritating readers by frequent references to details in other books. The examples are simple, to make
the book teachable. We hope that this book will be extremely useful to students having no background of
‘topological properties’.

Suggested Course Outlines

Evidently, this book has been arranged according to the course content of several leading universities of
the world. No doubt, several topics are independent of one another, so it is profitable to advise the reader
what should be read before a particular chapter.

Beyond any doubt, the book contains too much material that can be covered in a one-year course, but
there is considerable flexibility for individual course design. Chapters 2 — 11 are suitable for a full-year
course in general topology at the lower undergraduate level. For a one-year graduate course, we suggest
Chaps. 2 — 6 and 7 — 11. The subject matter of Chaps. 12 and 13 can be studied just after finishing the core
part with the adaptability of turning to materials of Chaps. 12 and 13 as and when needed. Keeping in view
the study of the subject in the framework of two semesters course, the dependencies of chapters with only
exception of chaps. 12 and 13 can roughly be divided as follows:

First Semester Course Second Semester Course

Chapter 1 — 2 Chapter 7

Chapter 3 Chapter 8
Chapter 4 Chapter 9
Chapter 5 Chapter 10

Chapter 6 Chapter 11

Chapters 12- 13

There are many people who deserve my gratitude in connection with the writing of this book. The au-
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thor is highly indebted to many of his former teachers, colleagues, and students who directly or indirectly
helped him in preparing this book. In particular, we extend very special cordial thanks to our colleagues
and research collaborators Professors Satya Deo, V. Kannan, B. K. Sharma, M. Imdad, P. Veeramani, B.
S. Thakur, D. R. Sahu, Hemant K. Nashine, P. P. Murthy all from India, Professors N. Shahzad, N. Hus-
sain, Reny George, R. Rajagopalan and Fahad.S.Alshammari from Saudi Arabia, Professor S.S.Chang from
China, Professors Shin Min Kang, J. S. Ume, B.S. Lee from S. Korea, Professor S. N. Mishra from S.
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Africa, Professor Brian Fisher from England, Professors Billy E. Rhoades, Ravi P. Agarwal, and Gerald
Jungck from the USA, Professors Yeol Je Cho, Shin Min Kang from S. Korea who gave much to the beauty
and power of mathematics. It is a pleasure to acknowledge the great help and technical support given us by
the publisher, in their rapid and meticulous publication of the work.

May 15, 2022 H. K. Pathak
(On the occasion of International Day of Families)
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inverse image of B under f
identity map on X
inclusion function
restriction f to A
sequence whose n'* term is x,,
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P.(2)
exp(z)

(x: P(x))

I1 Xa

act

collection of all subsets of X

open interval {x:a < x < b}

closed interval {x:a <x <b}

inverse mapping

composition of mappings f and g
metrics

uniform metric

open ball centered at x and of radius r
closed ball centered at x and of radius r
topology

topology induced by metric d
topology of pointwise convergence
topology of compact convergence (or compact-open topology)
base for a topology

uniformities

base for a uniformity

topology induced by uniformity %

n-dimensional homotopy group

real n-dimensional projective space
supremum of S
infimum of S
modulus of z
conjugate of z
polynomial of degree n
exponential function of z
set of all x such that P(x)
The first (or least) uncountable ordinal number
direct product of spaces Xy



