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Preface

This book entitled with “Functional Analysis and Applications" is designed as a text book for two semester
courses usually called “Introductory Functional Analysis” and “Advanced Functional Analysis”. The first
course is customarily offered at the senior undergraduate course while the second course is offered at the
beginning of graduate course. It is presumed that students have some prior knowledge of analysis, linear
algebra, point set topology and measure theory. In particular, basic knowledge of differential and integration
theory, real and complex analysis, metric topology, the geometry of the linear space, the linear operators
on the space, the existence of a linear space with a topology or two (or more), measurable functions and
measure spaces.

The subject functional analysis is of immense interest in its own right, and it also serves to lay the
foundations for future study in mathematical analysis, in harmonic analysis, in linear algebra, in geometry,
physics. In this book we present fundamental material that will also be of interest to scientists, in particular,
computer scientists, physicists, mechanical engineers, and electrical engineers.

The word Course in the title of this book has two meanings. The first is obvious. This book was meant
as a text for the senior undergraduate course and the beginning of graduate course in functional analysis.
The second meaning is that the book attempts to take an excursion through many of the territories that com-
prises functional analysis. This excursion will give an opportunity to the reader a choice of several tours in
the territories of functional analysis. This will offer the reader an opportunity to get more involved in the
subject to see some applications to other parts of mathematics.

Pre-requisites

A good grasp of linear algebra, real and complex analysis, and advanced calculus may be enough for
the first course while introductory knowledge of measure theory may be necessary for the second course.
Introductory knowledge of topology is already covered any course on real analysis under the topology of real
line and may be enough to proceed with. However, for an easy reading and to avoid irritations of referring
to other texts books over and again, all the fundamental concepts are quickly captured in Chapter 1.

The contents of the book have been divided into sixteen chapters, is devoted to the subject commonly
called functional analysis. Chapters 2-13 deal with the body of material that is included in any introductory
functional analysis course worthy of the name. This may be considered the “irreducible core" of the subject,
treating as it does normed linear spaces, spaces of bounded linear functions, Hilbert spaces, linear opera-
tors, Banach algebra, differentiation and integration in Banach spaces, variational methods and optimization
problems, operator theory, nonlinear operators, spectral theory, approximation theory and optimization and
fixed point theory. The remaining three chapters; that is, chaps. 14-16 explore additional topics; they are
essentially independent of one another, depending on only the core material of Chapters 2-13. Instructors
may take them up in any order they prefer.

Chapter 1 begins with an introduction to the basic concepts of analysis and topology, in particular, the
notions of a metric space and its variants, topological spaces, linear spaces and some basic tools of measure
theory.

Chapter 2 is devoted to a generalization of n-dimensional Euclidean space, namely R" as well as n-
unitary space C", known as Banach space. In this chapter we study spaces of sequences and spaces of
different classes of functions such as spaces of continuous differential integrable functions. The properties
of set of all linear/bounded operators or mappings have been studied. Geometrical and topological proper-
ties of Banach space and its general case normed linear space are presented.

Chapter 3 deals with five fundamental results of functional analysis, namely Hahn-Banach theorem,
Banach-Alaoglu theorem, uniform boundedness principle, open mapping theorem, and closed graph theo-
rem. Indeed, these theorems have played significant role in approximation and optimization theory, Fourier
analysis, numerical analysis, control theory, mechanics, mathematical economics, and differential and par-
tial differential equations.

Chapter 4 is devoted to the study of the dual space of some familiar Banach spaces of sequences and
functions. The concepts of weak convergence of sequences of elements in a normed linear space and the
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weak™ convergence of sequences of functionals are introduced. We also discuss the notions of strong and
weak topologies and observe that the concept of weak topology in the setting of a normed linear space pro-
vides an interesting criteria for reflexivity.

Chapter 5 studies a special class of Banach space in which the underlying vector space is equipped with
a structure, called an inner product providing the generalization of geometrical concepts like angle and or-
thogonality between two vectors. The inner product is, indeed, a generalization of the dot product of vector
calculus. In the sequel, we study Hilbert space with its beautiful geometrical properties and Hilbert space
method. It is, indeed, a powerful tool to tackle problems of diverse fields of classical mathematics like linear
equations, approximation theory, variational methods, ordinary differential equations.

Chapter 6 introduces the notion of Banach algebra; its theory constitute a field of study in which a wide
varicty of mathematical ideas meet in significant contact. In the sequel, we discuss some useful applications
of Banach algebra.

Chapter 7 is is devoted to the study of differentiation and integration of operators defined on a Banach
space into another Banach space. In this chapter we give three crucial theorems, namely Taylor’s theorem,
inverse function, and implicit function theorems. These theorems have played significant role in approxima-
tion theory, Fourier analysis, numerical analysis, optimization, differential and partial differential equations.
We discuss an important concept of nonlinear analysis, namely subdifferential of convex functionals. Fi-
nally, we discuss about integration in Banach spaces.

Chapter 8 introduces certain topics in the elementary theory of Hilbert spaces which lead directly to
abstract variational or weak formulation of boundary value problems. We also discuss the notion of opti-
mization of a functional defined on a normed space by Banach space and Hilbert space.

Chapter 9 is devoted to the study of approximation and optimization. We present a generalized form
of Weierstrass theorem commonly known as Stone-Weierstrass theorem. This theorem relates to continu-
ous functions defined on compact Hausdorft spaces. and has become an indispensable tool in topology and
modern analysis.

Chapter 10 introduces the notions of closed operators, compact linear operators, finite-rank operators,
positive semidefinite operators as well as strongly positive operators in Banach spaces. The important role
of closed linear operators in the theory of unbounded operators is studied.

Chapter 11 deals with certain non-linear operators which arise naturally in differential geometry and
mathematical physics.

Chapter 12 introduces the notions of the resolvent, the spectrum set of a bounded linear operator and
projection operator. The notion of projection operator is used to reformulate another form of the spectral
theorem which is of theoretical importance because it generalizes to non-compact operators more easily.
Using spectral theorem to “Fredholm alternative”, we obtain the existence and uniqueness of solutions of
linear operator equations.

Chapter 13 discusses mainly Banach’s fixed point theorem, Brouwer’s fixed point theorem, Schauder
fixed point theorem and applications. Fixed point results in ordered Banach spaces are also discussed.

Chapter 14 deals with mathematical models of real-world problems known as variational inequalities
introduced systematically by J.L. Lions and S. Stampachia in early seventies. Modeling, discretization, al-
gorithms, and visualization of solutions along with updated references are presented.

Chapter 15 discusses frame and basis theory in Hilbert spaces. The essence of this chapter is to show
that every element of an inner product space can be expressed as a linear combination of elements in a given
frame where linear independence is not required.

Chapter 16 discusses frames and bases in Banach spaces. Retro Banach frame, A-Banach frame, fusion
Banach frame, near exact Banach frame, F-Banach frame, and their applications are discussed.

This book evolved from classes taught by the author at Kalyan PG College, Bhilai and Pt. Ravishankar
Shukla University, Raipur, India. Moreover, the book is self-contained and the presentation is detailed, to
avoid irritating readers by frequent references to details in other books. The examples are simple, to make
the book teachable. We hope that this book will be extremely useful to students having no background of
‘topological properties’.

Suggested Course Outlines

Evidently, this book has been arranged according to the course content of several leading universities of
the world. No doubt, several topics are independent of one another, so it is profitable to advise the reader
what should be read before a particular chapter.

Beyond any doubt, the book contains too much material that can be covered in a one-year course, but
there is considerable flexibility for individual course design. Chapters 2 — 13 are suitable for a full-year
course in functional analysis at the lower undergraduate level. For a one-year graduate course, we suggest
Chaps. 2 —7 and 8 — 13. The subject matter of Chaps. 14-16 can be studied just after finishing the core part



ix

with the adaptability of turning to materials of Chaps. 14-16 as and when needed. Keeping in view the study
of the subject in the framework of two semesters course, the dependencies of chapters with only exception
of chaps. 13-16 can roughly be divided as follows:

First Semester Course Second Semester Course

Chapter 1 @)@I
Chapter 3 Chapter 9
[Chaper ]

i

H
H

Chapt

[¢]
=
S~

Chapter 5 @@
Chapter 7 ChapterE

il
{aH

Chapt

i

| Chapters 14- 16 | «— | Optional |

There are many people who deserve my gratitude in connection with the writing of this book. The au-
thor is highly indebted to many of his former teachers, colleagues, and students who directly or indirectly
helped him in preparing this book. In particular, we extend very special cordial thanks to our colleagues and
research collaborators Professors Satya Deo, V. Kannan, B. K. Sharma, J. Patel, M. Imdad, Q. H. Ansari,
P. Veeramani, B. S. Thakur, D. R. Sahu, Hemant K. Nashine, P. P. Murthy all from India, Professors N.
Shahzad and N. Hussain from Saudi Arabia, Professor S. S. Chang from China, Professors S. Park, Y. J.
Cho, S. M. Kang, J. S. Ume, B. S. Lee from S. Korea, Professor S. N. Mishra from S. Africa, Professor
Brian Fisher from England, Professor Donald O’Regan from Ireland, Professors Billy E. Rhoades, Ravi P.
Agarwal, and Gerald Jungck from the USA, Professor Tomonari Suzuki from Japan who gave much to the
beauty and power of mathematics. It is a pleasure to acknowledge the great help and technical support given
us by the publisher, in their rapid and meticulous publication of the work. Moreover, the author is highly
indebted to the reviewers for their valuable comments and helpful suggestions.

October 2, 2021 H. K. Pathak

(On the occasion of Mahatma Gandhi’s 153rd Birth Anniversary)
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Glossary of Symbols

N or Z4 set of all natural numbers

R set of all real numbers

Z set of all integers
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intA, A° interior of A

0A, AP boundary of A

AXB cartesian product of sets A and B
D(f) domain of f

R(f) range of f

aRb a is R-related to b

v for all

= implies

f:X—=Y f is a function from X to Y
1) image of A under f

f YB) inverse image of B under f

ix identity map on X

i:B—A inclusion function

fla restriction f to A

(xn), {20} sequence whose n'”* term is x,,

XX1



Xxii

P(X)

collection of all subsets of X

open interval {x:a <x < b}
closed interval {x:a <x <b}
inverse mapping
composition of mappings f and g
metrics
uniform metric

open ball centered at x and of radius r
closed ball centered at x and of radius r
topology
topology induced by metric d
topology of pointwise convergence
topology of compact convergence (or compact-open topology)
base for a topology
n-dimensional homotopy group

real n-dimensional projective space
supremum of S

infimum of §

modulus of z

conjugate of z

polynomial of degree n

exponential function of z

set of all x such that P(x)

direct sum of groups Gy, @ € J

direct product of spaces Xy
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