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Preface

Algebraic topology is a most flourishing and productive branch of mathematics that uses tools from abstract
algebra to study topological spaces and one creates topological invariants that are algebraic in nature. The
basic goal of studding algebraic topology is to find algebraic invariants that classify topological spaces
up to homeomorphism, though usually most classify up to homotopy equivalence. Looking over different
approaches to study topology, one can see that there are mainly five core branches of topology , viz., point
set topology, geometric topology, algebraic topology, combinatorial topology, and differential topology,
Algebraic topology is, in fact, an important branch of topology having several connections with many areas
of modern mathematics. The essence of algebraic topology lies on the fact that it encompasses algebra
and topology in a single thread resulting enormous applications in various domains of applied sciences. Its
growth and influence, particularly since the early forties of the twentieth century, has been remarkably high.
Presently, it is being taught in many universities at the upper undergraduate level in BS/BSc Hons/ MS/MSc
or beginning PhD level as a compulsory or as an elective course. It is best suited for those who have already
had an introductory course in topology as well as in algebra. There are several excellent books, starting
with the first monograph ‘Foundations of Algebraic Topology’ by S. Eilenberg and N.E. Steenrod, ‘A Basic
Course in Algebraic Topology’ by W.S. Massey, ‘Algebraic Topology by W. Fulton and many more. Any one
of these can be prescribed as a textbook for a first course on algebraic topology by making proper selections.
However, there is no general agreement on what should be the ‘first course’ in this subject. Experience
suggests that a comprehensive coverage of the topology of simplicial complexes, simplicial homology of
polyhedra, fundamental groups, covering spaces and some of their classical applications like invariance
of dimension of Euclidean spaces, Brouwer’s Fixed Point Theorem, etc. are the essential minimum which
must find a place in a beginning course on algebraic topology. Having learnt these basic concepts and their
powerful techniques, one can then go on in any direction of the subject at an advanced level depending on
one’s interest and requirement.

Indeed, the main objective of this book is to introduce a student to some of the fundamental and important
ideas of algebraic topology by emphasizing the relations of these ideas with other areas of mathematics.
Rather than choosing the deep rooted ideas of modern topology, we concentrate our attention on introducing
only as much algebraic machinery as necessary for problems we meet while dealing with homotopy theory,
simplicial homology theory, singular homology theory, axiometic homology, differential topology , etc. in
low dimensions. As a first course, we can and do hope that this approach is in better harmony with the
historical development of the subject.

This book entitled with “Algebraic Topology and Applications" is designed as a text book for two
semesters course for upper undergraduate and beginning graduate levels. The first one-semester course of
this text is designed and is usually entitled ‘Algebraic Topology’ offered at the advanced undergraduate level
and the second one-semester course that is usually entitled ‘Advances in Algebraic Topology’ offered at the
beginning graduate level. It is accessible to junior mathematics majors who have studied general topology
or point set topology. The second course is offered at the beginning of graduate course.

Pre-requisites

The essential prerequisites for reading this book are quite minimal: a basic understanding of fundamen-
tal notions of other topology, known as general topology or point set topology. This means that the reader
should know what is meant by words like open, closed, compact, connected, and continuous and some of
the basic facts about them. Because of our approach via analysis, the reader should know some basic facts
about calculus, mainly for functions of one, two and multi-variables. In algebra, some basic notions of
group, especially abelian group, and some basic linear algebra is required. Moreover, we have given com-
plete definitions well explained by suitable examples, explanations, and proofs throughout the text, so that
the book should be usable for indivisible study as well as for a course work.

Perhaps, in the later stage of study, we require the knowledge of advanced algebra, manifolds, com-
plexes, combinatorics and differential geometry. It is very important because it opens the path to see the
connection between different branches of mathematics. In fact, the development of topology over the last
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five decades has reached a high level in many directions. This process of development is still not finished,
although a number of important problems that has faced by topologists were solved. The important feature
of topology is that the very wide use of its methods in many of the other branches of modern mathematics
such as those dealing with functional analysis, partial differential equations, classical mechanics, theoretical
physics, general theory of relativity, mathematical economics, biology, etc. Topology is, indeed, an abstract
mathematical theory that connects different branches, carries the potential of new development of mathe-
matics. For example, Cauchy Integral Formula in complex analysis can be viewed differently in different
branches of mathematics. From the viewpoint of partial differential equation, it is the solution of Dirichlet
problem of Laplace equations, and from the viewpoint of harmonic analysis, it is the Abel sum of the Fourier
series of a function. Nowadays algebraic topology has become a powerful instrument of mathematical re-
search, and its language acquired importance.

The contents of the book has been divided into ten chapters, is devoted to the subject commonly called
algebraic topology The first chapter is strictly preparatory and may be assigned as a self-study. It deals with
basics of abstract algebra and point set topology reviewing group, group homomorphism, structure theorem,
direct sum of abelian groups, free product of groups, free groups, modules, tensor product of modules and
homomorphism, Euclidean spaces, continuous maps and product spaces, product topology, categories and
functors. Chapter 2 devoted to pretty basic information on topological groups and transformation groups.
This chapter is also concerned with the action of topological groups on topological spaces and associated
orbit spaces. Chapter 3 deals with the fundamental group and covering spaces. In this chapter, the notion
of fundamental group is introduced and its properties are studied. Some applications to algebra, vector field
and index theory and mathematical economics are given. Chapter 4 studies on separation theorems in the
plane which includes the Jordan separation theorem, invariance of domain, the Jordan curve theorem etc.
and some application to complex analysis. Chapter 5 deals with the Seifert-van Kampen theorem which is a
powerful theorem for computing the fundamental group of a path-connected space that can be decomposed
as the union of two path-connected, open subsets whose intersection is also path-connected. The funda-
mental group of a wedge of circles, adjoining a two cells and the fundamental groups of the torus and the
dunce cap are also given. Chapter 6 deals with simplicial complexes, simplexes, Triangulations and simpli-
cial homology. In this chapter we also discuss oof simplicial complexes. Chapter 7 studies on homology,
in particular, singular homotopy, topology invariance, Betti numbers and the Euler characteristic and com-
putational homology. Chapter 8 deals with homology and cohomology theories. In this chapter, we discuss
axiom for simplicial homology, relative homology, singular homology with coefficients, Mayer-Vietoris se-
quence for singular homology, singular cohomology and cohomology algebra, Jordan-Brouwer separation
theorem, singular cohomology and cohomology algebra, and universal coefficient theorem for cohomology.
Chapter 9 discusses classification of surfaces. Our study is focused on fundamental groups of surfaces and
homology groups. Chapter 10 deals with some applications to calculus. In this chapter we discuss vector
fields on surfaces, index theory for n-symmetric fields and some applications in computer graphics.

Suggested Course Outlines
As the book has been arranged according to the author’s liking, one can observe that several topics are

independent of one another, so it is profitable to advise the reader what should be read before a particular
chapter in two semesters course. The dependencies of chapters are are marked by arrows as follows:

Semester-1 Semester-2

|Chapters 1— 2| Chapter 6

Chapter 7

Chapter 4 Chaptel’ 8

I

<~

Chapter 5 Chapter 9

Ar
\I&I%

Chapter 10
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It may be observed that the book contains too much material that can be covered in a one-year course,
but there is considerable flexibility for individual course design. Chapters 2 — 10 are suitable for a full-year
course in algebraic topology at the advanced undergraduate level/first year post graduate course as major
or elective paper. There may be two options for two semesters course-Chapters 2 — 5 for the first semester
course and Chapters 6 — 10 for the second semester course, or else Chapters 2 — 5 followed by Chapter 10
are suitable for the first semester course and Chapters 6 — 9 for the second semester course.

This book evolved from classes taught by the author in 5 Year Integrated M.Sc. at Center for Basic
Sciences and Ph.D. course work at School of Studies in Mathematics, Pt. Ravishankar Shukla University,
Raipur, India. Furthermore, the book is self-contained and the presentation is detailed, to avoid irritating
readers by frequent references to details in other books. The examples are simple, to make the book teach-
able. We hope that this book will be extremely useful to students having background of ‘abstract algebra’
and ‘point set topology’.

There are many people who deserve my gratitude in connection with the writing of this book. The author
is highly indebted to many of his former teachers, colleagues, and students who directly or indirectly helped
him in preparing this book. In particular, we extend very special cordial thanks to our colleagues and re-
search collaborators Professors Satya Deo, V. Kannan, B. K. Sharma, M. Imdad, Q. H. Ansari, P. Veeramani,
B. S. Thakur, D. R. Sahu, Hemant K. Nashine, P. P. Murthy all from India, Professors N. Shahzad and N.
Hussain from Saudi Arabia, Professor S.S.Chang from China, Professors Shin Min Kang, J. S. Ume, B.S.
Lee from S. Korea, Professor S. N. Mishra from S. Africa, Professor Brian Fisher from England, Professors
Billy E. Rhoades, Ravi P. Agarwal, and Gerald Jungck from the USA, Professors Yeol Je Cho, Shin Min
Kang from S. Korea who gave much to the beauty and power of mathematics. It is a pleasure to acknowledge
the great help and technical support given us by the publisher, in their rapid and meticulous publication of
the work.

April 22, 2022 H. K. Pathak
(On the occasion of World Earth Day)
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Glossary of Symbols

N or Z4 set of all natural numbers

R set of all real numbers

Z set of all integers

Q set of all rational numbers

C set of all complex numbers

Co extended complex plane C U {eo}
R” n-dimensional Euclidean space
cr n-dimensional unitary space
H" The set of all n-tuples (g1,g2, - -+ ,gn) of quaternions
€ belongs to

¢ does not belong to

[,: such that

- subset

u union

N intersection

=\ difference

1A index set

0 empty set

ﬁ product, i ranging from 1 to n
i=1

(a,b) ordered pair

intA, A° interior of A

0A, AP boundary of A

AXB cartesian product of sets A and B
D(f) domain of f

R(f) range of f

aRb a is R-related to b

v for all

= implies

f:X—=Y f is a function from X to Y
1) image of A under f

f YB) inverse image of B under f

ix identity map on X

i:B—A inclusion function

fla restriction f to A

(xn), {20} sequence whose n'”* term is x,,

XixX



P(X)

collection of all subsets of X

open interval {x:a <x < b}
closed interval {x:a <x <b}
inverse mapping
composition of mappings f and g
metrics
uniform metric

open ball centered at x and of radius r
closed ball centered at x and of radius r
topology
topology induced by metric d
topology of pointwise convergence
topology of compact convergence (or compact-open topology)
base for a topology
n-dimensional homotopy group

real n-dimensional projective space
supremum of S

infimum of §

modulus of z

conjugate of z

polynomial of degree n

exponential function of z

set of all x such that P(x)

direct sum of groups Gy, @ € J

direct product of spaces Xy

direct product of free groups G



